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ABSTRACT
Mycobacterium tuberculosis is the most successful pathogen with multiple mechanisms to subvert host immune response, resulting in

insidious disease. A uniqueMycobacterium antigen family termed PPE (Pro-Pro-Glu) has long been widely speculated as ‘‘molecular mantra’’

to escape host immunity. Members of this family are characterized by a conserved N terminal and a variable C terminal. This family associated

closely with ESAT-6(ESX) secretion system and largely located in cell wall or cell membrane. The expression of PPE protein is temporally

regulated, and highly expressed during M. tuberculosis persistence. Importantly, the distribution of PPE family is so far limited to

Mycobacterium genus, prevalent among pathogenic Mycobacterium species. It is tempting to explore this family due to its potential in

the latency and reactivation of M. tuberculosis. The evolution, structure, and functions of most PPE proteins remain elusive. The

understanding of these questions will deepen our appreciation of the pathogenesis ofM. tuberculosis and accelerate novel anti-TB measures

discovery. J. Cell. Biochem. 113: 1087–1095, 2012. � 2011 Wiley Periodicals, Inc.
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T uberculosis continues to be one of the most prevalent and

deadly infectious diseases. About one third of the world

population is latently infected with M. tuberculosis, and in 2008 an

estimated 1.3 million people died of tuberculosis and an estimated 9.3

million people developed the active tuberculosis worldwide. The

lengthy duration of treatment with a combination of three to four

antibiotics, the poor patient compliance, shortage of novel drugs,

emerging of multi-drug resistant (MDR), and extensive drug resistant

(XDR) M. tuberculosis strains, increase incidence of HIV co-infection,

and the unreliable drug supply synergistically exacerbated the scenario

[Luthi and Diacon, 2011; Venkatesh et al., 2011]. Therefore, effective

new measures are urgently needed to control TB. The biology of

M. tuberculosis unique genes might offer unprecedented opportunity.

PE (Pro-Glu) and PPE (Pro-Pro-Glu) are two-gene families

account for about 10% of the M. tuberculosis genome, with 99 and

69members, respectively [Cole et al., 1998]. The name of PE and PPE

is derived from N-terminal Pro(P)-Glu(E) and Pro(P)-Pro(P)-Glu(E)

residues [Cole and Barrell, 1998]. They have a conserved N-terminal

approximately 110 and 180 amino acid residues and a C-terminal

varying significantly with sequences and sizes [Bottai and Brosch,

2009]. PE is characterized by multiple copies of PGRS (polymorphic

GC-rich repetitive sequences) and PPE bears a MPTR (major

polymorphic tandem repeats) in their C terminal [Hermans et al.,

1992; Poulet and Cole, 1995]. Some previous excellent reviews have

covered the origin, physiological role, and spatiotemporal regula-

tion of some well-characterized PE family proteins [Brennan and

Delogu, 2002; Tian and Jian-Ping, 2010]. In this review, we aim to

sum up the evolution, structure, and function of another important

antigen family (PPE), as well as their implications in novel vaccines

(Table I) and diagnostics against tuberculosis.
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THE DISTRIBUTION AND EVOLUTION OF
PPE FAMILY

There are 69 PPEmembers inM. tuberculosis, up to 6% of the coding

capacity of the whole-genome [Cole et al., 1998; Brennan and

Delogu, 2002]. Previous reports about some repetitive proteins

homologous to PPE in Corynebacterium and Nocardia farcinica

genomes might result from unspecific alignment of repetitive

regions, due to absence of typical PPE motif in their N terminal

[Cerdeno-Tarraga et al., 2003; Ishikawa et al., 2004]. Comparative

genomic analysis suggests that PPE proteins were largely limited to

Mycobacterium genus [Gey van Pittius et al., 2006], especially

enriched in pathogenic Mycobacterium species (Fig. 1), such as

M. tuberculosis, M. bovis, M. ulcerans, M. marinum, and

M. kansasii, suggestive of unique roles in the virulence,

pathogenesis, and persistence of Mycobacterium.

The evolution of PPE family was presumably associated with

ESAT-6 (esx) gene cluster [Gey van Pittius et al., 2006], encoding the

ESAT-6 family T-cell antigen secretion system [Guinn et al., 2004].

PE and PPE genes were initially inserted into the ESAT-6 (esx) gene

cluster region 1, subsequently duplicated along with the ESAT-6

regions and expanded. Every major duplication event was followed

by numerous minor subduplications. The evolution of PE_PGRS (PE)

and PPE_MPTR (PPE) subfamily is relatively a recent event, which

occurred at the defined evolutional branching points of Mycobacte-

rium. PE_PGRS emerges after the divergence of the M. avium

complex andM. leprae. PPE_MPTR evolves before the divergence of

M. marinum/M. ulcerans and theM. tuberculosis complex [Gey van

Pittius et al., 2006]. The C-terminal PGRS repeat elements

(TTGCCGCCGTTGCCGCCG) of some PE genes resembles the

C-terminal MPTR repeat sequence (GCCGGTGTTG) of the PPE

genes [Hermans et al., 1992; Poulet and Cole, 1995]. In addition,

Fig. 1. The distribution of PPE proteins among Mycobacterium. The X- and Y-axis represent different Mycobacterium strains and corresponding numbers of PPE proteins,

respectively. Complete sequence alignment was performed with the amino acids of PPE orthologs from all GenBank database available Mycobacterium genomes

(http://www.ncbi.nlm.nih.gov/). The results were generated by BLAST (http://blast.ncbi.nlm.nih.gov/). [Color figure can be seen in the online version of this article, available

at http://wileyonlinelibrary.com/journal/jcb]

TABLE I. The Features of Some Well-Characterized PPE Family Members

PPE Gene Vaccine and/or biomarker Immunoreactivity Reference

PPE17 Rv1168c Biomarker in clinically active TB Stronger immunoreactivity than PPD,
Hsp60, or ESAT-6

Khan et al., (2008)

PPE18 Rv1196 A potential T cell antigen Elicite strongly the proliferation of
T-cell and IFN-g responses than PPD

Dillon et al. (1999),
Nair et al. (2009, 2011)

PPE34 Rv1917c A potential T cell antigen Mediates the secretion of IL-4, IL-5,
and IL-10

Bansal et al. (2010)

PPE41 Rv2430c A potential B cell antigen Strong B-cell response compared to Hsp10
or PPD

Choudhary et al. (2003, 2004)

PPE42 Rv2608 A potential B cell antigen Predominantly humoral response Chakhaiyar et al. (2004)
PPE44 Rv2770c Subunit anti-TB vaccine and biomarkers

of acutely, chronically and latently
infectious stages

Strong cellular and humoral immune
responses than BCG

Cuccu et al. (2011),
Romano et al. (2008)

PPE55 Rv3347c Biomarker in all infection stages Anti-PPE55 antibodies response Singh et al. (2005)
PPE57 Rv3425 rBCG::Ag85B-Rv3425 subunit vaccine

and biomarker
Produce higher IgG2a and IFN-g than

rBCG::Ag85B
Wang et al. (2009)

PPE68 Rv3873 T-cell antigen Trigger higher IFN-g than PPD Okkels et al. (2003)
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11 of the predicted 69 PPE proteins lack the characteristic

N-terminal PPE motif. Six of these PPE6/Rv0305c, PPE57/

Rv3425, PPE58/Rv3426, PPE59/Rv3429, PPE63/Rv3539, and

PPE69/Rv3892c result from a substitution in one of the two-proline

residues in the conserved motif. The upstream regions of another

five proteins (PPE5/Rv0304c, PPE7 /Rv0354c, PPE39/Rv2353c,

PPE47/Rv3021c, and PPE66/Rv3738c) were disrupted by either

IS6110 insertion or apparent frameshift mutations [Gey van Pittius

et al., 2006]. Together, these data imply that the evolution of the two

gene families (PE and PPE) may through insertion/deletion, which

serve as a major source of antigenic variation [Talarico et al., 2008].

THE PRIMARY STRUCTURE OF PPE PROTEINS

Most members of PPE family have a conserved N-terminal domain

followed by a C-terminal domain. Based on the motifs and repeat

copy numbers of C terminal sequence, this family can be divided

into four subfamilies [Adindla and Guruprasad, 2003]. The first is

the 24 members PPE-SVP subfamily, which is the largest one

bearing a typical motif Gly-X-X-Ser-Val-Pro-X-X-Trp between

position 300 and 350 [Adindla and Guruprasad, 2003; Gey van

Pittius et al., 2006]. The second subfamily is the PPE_MPTR (Major

Polymorphic Tandem Repeat) subfamily characterized by multiple

repeats (Asn-X-Gly-X-Gly-Asn-X-Gly) in its C-terminal, encoded

by a consensus repeat sequence GCCGGTGTTG that is spaced by 5 bp

nucleotides [Hermans et al., 1992; Cole and Barrell, 1998]. The third

subfamily is PPE-PPWwhich has a conserved 44 amino acid residue

comprising of highly conserved Gly-Phe-X-Gly-Thr and Pro-X-X-

Pro-X-X-Trp motifs at its C terminus [Adindla and Guruprasad,

2003; Gey van Pittius et al., 2006]. The last subfamily has 12

members with a low homology at the C-terminal sequence [Gey van

Pittius et al., 2006].

The C-terminal domain (225 amino acids residues) of PPE

proteins (PPE_MPTR) resembles PE proteins (PE_PGRS) termed ‘‘PE-

PPE domain’’ [Adindla and Guruprasad, 2003], which contains a

GxSxG/S motif at N-terminal and a serine a/b hydrolase fold

(a central b-sheet flanked by a-helices on either side) with specific

esterase, lipase, or cutinase activity [Sultana et al., 2011]. The

structure comprises a lid insertion with a closed conformation and a

solvent inaccessible active site. The oxyanion hole that stabilizes the

negative charge on the tetrahedral intermediate has been identified

[Sultana et al., 2011]. This has expanded the extents of serine

hydrolases, which are necessary to maintain the impermeable cell

wall and virulence of Mycobacterium. Circular dichroism (CD)

spectrum and web-based program K2D demonstrated that recombi-

nant Rv2430c protein contains 81% a helical and 19% random coil,

consistent with the in silico predictions of a predominant a helical

[Choudhary et al., 2004]. The relative molecular weight of

recombinant Rv1168c protein was about 51.5 kDa. Secondary

structure of Rv1168c has about 34.4% a helix, 33.7% b turn, and

31.9% random coil [Yu et al., 2010]. The heterologous expression of

PPE is difficult, therefore, only few PPE protein crystal structures are

available. A case in point is the PE/PPE complex solved by David

Eisenberg et al. [Strong et al., 2006], which shows that the PE and

PPE proteins align along an extended apolar interface to form a

four-a-helical bundle, where two of four a-helices are formed by

the PE protein and two by the PPE protein, respectively (Fig. 2). The

structure and function of proteins are usually consistent. More

structures of PPE family proteins will shed more lights on their

function.

THE EXPRESSION AND REGULATION OF PPE GENES

Some PPE family genes are involved in the M. tuberculosis

persistence and highly expressed duringmultiple conditions, such as

high-iron [Rodriguez et al., 2002], infected macrophage [Schnap-

pinger et al., 2003], hypoxia [Park et al., 2003], nonreplicating

persistence, and stationary phase [Voskuil et al., 2004b], SDS

[Manganelli et al., 2001], diamide [Manganelli et al., 2002], and

diethylenetriamine/nitric oxide adduct (DETA/NO or DNO) [Voskuil

et al., 2003]. The PE/PPE might be the crucial for the antigen

variation during host infection, since 128 of the 169 PE/PPE genes

and approximately two-third of the PPE genes (Fig. 3) are

differentially expressed under 15 conditions as previously described

and others including hydrogen peroxide (H2O2), potassium cyanide

(KCN), carbonyl-cyanide 3-chlorophenylhydrazone (CCCP), etham-

butol, palmitic acid, starvation, and heat shock (458C) have clearly
manifested this diversity [Voskuil et al., 2004a]. No expression of

PPE5/Rv0304c, PPE7/Rv0354c, PPE9/Rv0388c, PPE24/Rv1753c,

PPE49/Rv3125c, PPE64/Rv3558, PPE65/Rv3621c, PPE66/PPE66,

PPE69/Rv3892c can be detected under all tested circumstances.

Importantly, seven PPE proteins (PPE17/Rv1168c, PPE18/Rv1196,

PPE32/Rv1808, PPE33/Rv1808, PPE50/Rv3135, PPE51/Rv3136,

PPE60 /Rv3478) as highlighted in orange are regulated under at

Fig. 2. The secondary structure of Rv2430c-Rv2431c complex (PDB 2G38)

(Strong et al., 2006). The complex is composed of seven a-helices, Two

a-helices of the PE protein interact with two helices of the PPE protein to

form a four-helix bundle. [Color figure can be seen in the online version of this

article, available at http://wileyonlinelibrary.com/journal/jcb]
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least five conditions, suggesting important roles in the pathogenesis

of M. tubercurosis and deserve further study. Recent study has

shown that the expression patterns of PPE_MPTR subfamily genes

vary with each member and differentially regulated during mice

infection [Soldini et al., 2011]. Four of 10 PPE_MPTR genes are

constitutively expressed and maintained at similar level, including

PPE_MPTR10/Rv0442c, PPE_MPTR13/Rv0878c, PPE_MPTR40/

Rv2356c, and PPE_MPTR62/Rv3533c. The expression of another

four genes is inducible, including PPE_MPTR34/Rv1917c,

PPE_MPTR35/Rv1918c, PPE_MPTR6/Rv0305c, and PPE_MPTR53/

Rv3159c. Two PPE proteins (PPE_MPTR 16 and PPE_MPTR12/

Rv0755c) cannot be detected during different infection stages. Most

PPE genes give a poor expression or expressed in insoluble or

unfolded forms [Strong et al., 2006]. Some unknown factors

assisting the expression and correctly fold of PPE proteins might

exist. PE/PPE genes are regulated pairwise, PE5/PPE4 (Rv0285/

Rv0286), PE13/PPE18 (Rv1195/Rv1196), PE15/PPE20 (Rv1386/

Rv1387), and PE25/PPE41 (Rv2431c/Rv2430c) are down-regulated

while PE11/PPE17 (Rv1169c/Rv1168c) is up-regulated during

nutrient starvation [Betts et al., 2002]. Interestingly, either PE25/

Rv2431c or PPE41/Rv2430c alone can be only found E. coli

inclusion bodies, when co-expressed, both proteins are soluble

[Tundup et al., 2006]. This suggests that the interactions between PE

and PPE proteins may mutually promote the correct fold or PE and

PPE proteins may serve as reciprocal chaperones.

THE SUBCELLULAR LOCALIZATION OF PPE
FAMILY PROTEINS

Most pathogen depends on specific secretion system such as Type

VII or ESX to deliver their virulence factors into the host.

M. tuberculosis genome has five ESX members, namely ESX-1

(Rv3866-Rv3883c), ESX-2 (Rv3884c-Rv3895c), ESX-3 (Rv0282-

Rv0292), ESX-4 (Rv3444c-Rv3450c), and ESX-5 (Rv1782-Rv1798)

[Gey Van Pittius et al., 2001; Brodin et al., 2004]. ESX-1 locates in

RD1 region, which is responsible for the secretion of many substrates

including important T cell antigens ESAT-6 and CFP-10. The latter

two are associated with virulence and pathogenesis [Samten et al.,

2009]. The virulence factors secreted by ESX-1 are recognized by

multiple cytosolic AAA ATPases [DiGiuseppe Champion et al.,

2009]. Esx-3 is a specialized secretion system essential for

mycobactin-mediated iron acquisition [Siegrist et al., 2009].

PPE_MPTR subfamily might originate from PPE genes within the

ESX-5 cluster, suggestive of the function link of ESX-5 with the

recent expansion of PPE proteins [Gey van Pittius et al., 2006].

M.marinum ESX-5 mutant was defective in spreading to uninfected

macrophages and the secretion of PPE41 (Rv2430c) [Abdallah et al.,

2006], suggesting a pathogenicMycobacterium-specific distribution

of ESX-5 secretion apparatus.

The subcellular localization of PPEs might be of functional

significance. For example, cell wall associated ones might be

important in mediating the host–pathogen interaction. High-

throughput proteomics approaches have demonstrated that cell

wall/surface localization is a characteristic of several PE/PPE

proteins [Sani et al., 2010]. PPE-MPTR subfamily may be cell wall

associated andmay play a role in the transmission ofMycobacterium

through binding to host cell receptors [Doran et al., 1992]. PPE34/

Rv1917 is hydrophobic and associates with cell wall, largely

surface-exposed [Sampson et al., 2001]. The distribution of PPE36/

Rv2108 is limited among M. bovis BCG and clinical isolates of

M. tuberculosis and localized within cell membrane [Le Moigne

et al., 2005]. PPE68/Rv3873 is also predominantly associated with

theMycobacterium cell wall [Okkels et al., 2003]. However, whether

all members of PPE family are associated with cell well or secrete

outwards remains to be determined. It was reported that PE and PPE

domains of slow-growing Mycobacterium function as the signal

essential for secretion of LipY (triacylglycerol lipase) via the ESX-5

system. These PE and PPE domains are removed upon translocation

[Daleke et al., 2011].

THE FUNCTION OF PPE PROTEINS

PPE proteins are unique to Mycobacterium and some members

of PPE family play important role in the pathogenesis of TB

by regulating fatty acid metabolism and Mycobacterium

virulence (Fig. 4), though little is known on their specific roles

and functions.

PPE AFFECTS THE GROWTH OF M. tuberculosis DURING INFECTION

Transposon mutagenesis results have shown that PPE46/Rv3018c,

PPE4/Rv0286, PPE12 /Rv0755c, PPE24/Rv1753c, PPE50/Rv3135,

and PPE54/Rv3343c are essential forM. tuberculosis in vitro growth

[Sassetti et al., 2003]. PPE31/Rv1807 and PPE68/Rv3873 are

specifically required for Mycobacterium growth in vivo during

infection of mice [Sassetti and Rubin, 2003]. In addition, PPE29/

Rv1801 and PPE47/Rv3021c might be crucial for intracellular

Fig. 3. The differential expression of 69 PPE proteins under 15 different

conditions as described in the text. PPE proteins are induced only (yellow),

induced in some condition but repressed in another conditions (blue region)

and repressed only (green region), respectively. Among these, seven PPE

proteins highlighted in orange are regulated by at least five treatments. [Color

figure can be seen in the online version of this article, available at http://

wileyonlinelibrary.com/journal/jcb]
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survival and endothelial-cell invasion, since they are up-regulated

at least eightfold in human brain microvascular endothelial-cell-

associated TB [Jain et al., 2006]. Some PPE proteins are up-regulated

by multiple stresses, especially nutrition starvation, and nonrepli-

cating conditions (Supplementary 1) which are closely relevant to

the persistence of M. tuberculosis.

PPEs PLAY AN IMPORTANT ROLE IN M. tuberculosis VIRULENCE

Microarray and real time quantitative PCR analysis showed that

the deletion of Rv0485 can decrease the expression of gene

pair PE13/Rv1195 and PPE18/Rv1196, resulting in the attenuation

of M. tuberculosis virulence and reduced secretion of pro-

inflammatory cytokines by infected murine macrophages [Gold-

stone et al., 2009]. PPE41/Rv2430c induced in M. tuberculosis

IdeR mutant strain may have an important role in the pathogenesis

of M. tuberculosis [Rodriguez et al., 2002]. Ms_PPE37/Rv2123

can significantly lower the production of tumor necrosis

factor alpha (TNF-a) and interleukin-6 (IL-6) in the infected

macrophages, also the transcription of nuclear factor kappa B (NF-

kB), mitogen-activated protein kinase (MAPK)/extracellular signal-

regulated kinase (ERK), and MAPK/p38 [Daim et al., 2011],

suggesting a role of PPE37/Rv2123 in host immune evasion

through interfering with the pro-inflammatory cytokines. Whether

these PPEs function alone or synergistically with other

factors remain to be determined. This is a very interesting and

fruitful field to discover the intricate interaction between host and

pathogen.

PPEs SERVE AS LIPASE INVOLVED IN FATTY ACID METABOLISM

The N-terminal of PE_PGRS63 (LipYtub, encoded by Rv3097) is

homologous with the proline glutamic acid polymorphic GC-rich

repetitive sequences protein family of M. tuberculosis. The

C-terminal of LipY possesses hormone-sensitive lipase homology

and the conserved active-site motif GDSAG. LipY-deficient mutant

was significantly impaired in triglycerol (TG) [Deb et al., 2006],

suggestive of a role of LipY in the utilization of stored TG during

dormancy and reactivation of M. tuberculosis.M. marinum LipYmar

resembles LipY, with PE domain substituted by PPE domain.

The triacylglycerol (TAG) pool is dramatically decreased in

M. smegmatis overexpressing LipYmar. A PPE domain deleted

LipYmar yielded opposite result [Mishra et al., 2008], suggesting a

shared role between PPE domains and PE domains. However, LipYtub

and LipYmar cannot locate to cell wall in ESX-5mutant [Daleke et al.,

2011], implicating that LipYtub and LipYmar are both secreted into

cell well through ESX-5 secretion system.

PPE PROTEINS AND ANTIGENIC VARIATION

Two mechanisms presumably underlie antigenic variation: the

differential regulation and the structural genes mutation including

point mutation, insertion, deletion, and frameshift mutations

[Talarico et al., 2008]. Their highly polymorphic C-terminal domains

[Cole et al., 1998; Cole, 1999] might contribute to the antigenic

variation. M. bovis AF2122/97 and M. tuberculosis H37Rv genome

comparison [Garnier et al., 2003] revealed that the sequence

variation in 29 different PE_PGRS and 28 PPE proteins (belonging

to the PPE_MPTR subfamily) originates from frameshifts,

insertions, and deletions. The polymorphisms of MPTR domain of

the PPE_ MPTR subfamily gene PPE8/Rv0355c can be found among

more than 300 clinical isolates of M. tuberculosis [Srivastava et al.,

2006]. This polymorphism holds true for PPE42/Rv2608 in clinical

isolates of M. tuberculosis [Chakhaiyar et al., 2004]. However,

further data are needed to corroborate the role of PPEs in antigenic

variation, and do function in the host immune evasion or

subversion.

Fig. 4. The functions of some well-documented M tuberculosis PPEs. [Color figure can be seen in the online version of this article, available at http://wileyonlinelibrary.com/

journal/jcb]
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PPE PROTEINS INTERFERE THE MACROPHAGE FUNCTIONALITIES

The maturation and acidification of phagosome are crucial

macrophage defense mechanisms leading to the killing of intra-

phagosomal pathogens. Some PE and PPE proteins may assist the

M. tuberculosis persistence in host by subverting above function.

M. avium PPE gene (64% homologous to M. tuberculosis PPE25/

Rv1787) is up-regulated inmacrophages [Li et al., 2005]. Transposon

disruptants is deficient replication within macrophages, vacuole

acidification, and endosome/phagosome fusion, implicating a role

in the establishment of niche for bacterial macrophage intracellular

survival [Li et al., 2005; Jha et al., 2010]. Four PE_PGRS mutants

(PE_PGRS 5, 28, 44, 59) and three PPE_MPTR mutants

(PPE_MPTR10, 16, 21) enriched in acidified phagosomes have

been obtained from M. bovis BCG tranposon mutants library

[Stewart et al., 2005]. Transposon-mediatedM. tuberculosis (PPE54/

Rv3343c) mutant was incapable of arresting phagosome maturation

and rapid trafficking into acidified compartments [Brodin et al.,

2010].

THE SIGNIFICANCE OF PPE FAMILY IN
HOST IMMUNITY

PPE PROTEINS INVOLVE IN HUMORAL IMMUNITY

It is known that Mycobacterium-specific antibodies influence both

Mycobacterium dissemination and inflammatory response, though

the role of humoral immune responses in the control of

M. tuberculosis infection is disputable. The highly repetitive

domains of some PPE_MPTR subfamily members are presumably

responsible for eliciting antibody responses. Previous study has

shown that the Gly-X-Gly-Asn-X-Gly repeat motif of PPE41/

Rv2430c can elicit both humoral immunity and cell-mediated

immunity [Choudhary et al., 2003]. PPE42/Rv2608 showed positive

reactivity to patients’ serum samples through ELLSA and T cell-

proliferation assays in patients with relapsed TB [Chakhaiyar et al.,

2004]. Enzyme-linked immunosorbent assay (ELISA) has shown that

PPE41/Rv2430c induced stronger B-cell response than other well-

known antigens, such as Hsp10 or PPD [Choudhary et al., 2003]. In

addition, PPE44/Rv2770c skewed the immune response towards a

Th2 phenotype [Bonanni et al., 2005] as evidenced by the

predominant of IgG1 isotype over IgG2a and the low IFN-g and

delayed-type hypersensitivity responses in BALB/c mice infected

subcutaneously or intravenously withM. bovis BCG. The underlying

molecular mechanic remains to be solved, especially how these PPEs

bridge the humoral and cell mediated immunity.

PPE PROTEINS MODULATE CELL IMMUNITY

Functional CD8 T cells and CD4 T cell can initiate IFN-gamma

production at different stage of M. tuberculosis infection in mice

[Flynn et al., 1992; Caruso et al., 1999]. Therefore, cell-mediated

immunity also plays an important role in the control of

M. tuberculosis infection. T cell antigens may attribute to the

development of subunit vaccine. C57BL/6 mice immunized with

PPE14 Rv0915c DNA can develop both CD4-specific (predominantly

Th1) and CD8-specific T cell responses to PPE14/Rv0915c protein

[Skeiky et al., 2000]. PPE34/Rv1917c mediates the secretion of IL-4,

IL-5, and IL-10 from CD4þ T cells [Bansal et al., 2010]. The CD8þ
and CD4þ T cell populations and the splenocyte are significantly

expanded in mouse which immunized with PPE41(Rv2430c) and

PE25(Rv2431c)/PPE41(Rv2430c) protein complex as compared to

PE25 (Tundup et al., 2008), suggesting that PPE proteins such as

PPE41/Rv2430c may play an important role in T cell response.

Furthermore, A potent T cell antigen Mtb39a encoded by PPE18

(Rv1196) elicited strongly the proliferation of T-cell and IFN-g

responses in peripheral blood mononuclear cells from 9 of 12 PPD-

positive individuals tested [Dillon et al., 1999]. These indicate that

PPE proteins can assist Mycobacterium evade host immune through

cell-mediated immune and the identified T-cell epitopes might be

ideal candidates for subunit vaccine against tuberculosis.

PPE PROTEINS REGULATE INNATE IMMUNITY

Proinflammatory cytokines are crucial for host defense against

intracellular pathogen such asM. tuberculosis. Macrophage-derived

IL-12 and TNF can influence the development of Th1-type T cell

response and regulate the activation of immune response

[Trinchieri, 2003]. In contrast, macrophage-induced IL-10 cytokine

favors a Th2 T cell response [Nair et al., 2009]. Two well-documented

PPE proteins were involved in MAPK and NF-kB signaling pathway

via different mechanisms [Bansal et al., 2010; Nair et al., 2011].

PPE18/Rv1196c interacts specifically with TLR2, leading to

sustained activation of p38 MAPK [Nair et al., 2009] and indirectly

interacts with IkBa–NF-kB/rel complex through activation the

phosphorylation of SOCS3 (suppressor of cytokine signaling 3)

tyrosine residue, resulting in inhibition of NF-kB signaling [Nair

et al., 2011]. Another PPE protein PPE34/Rv1917c can facilitate the

subsequent immunity shift toward the Th2 phenotype by inducing

the expression of cyclooxygenase-2 (COX-2), triggering the

functional maturation of DCs and promote immune evasion of

Mycobacterium through integration of cross-talk between PI3K-

MAPK and NF-kB signaling cascades pathway [Bansal et al., 2010].

These suggest that some PPE proteins may effectively facilitate

M. tuberculosis escaping host immune response through interfere

with TLR-mediated signaling in innate immunity.

IMPLICATIONS FOR NEW ANTI-TB MEASURES

BIOMARKERS FOR TUBERCULOSIS SERODIAGNOSIS

Of the poor result of conventional diagnostic tests that based on

purified protein derivative (PPD) necessitates better new diagnostic

kits. The superior immunogenicity and sensitivity of some

M. tuberculosis PPE family proteins highlighted their values [Singh

et al., 2005; Khan et al., 2008; Wang et al., 2008]. PPE17/Rv1168c

antigen can detect smear-negative pulmonary TB as well as

extrapulmonary TB cases. Recombinant PPE17/Rv1168c protein

displayed stronger immunoreactivity against the sera obtained from

patients with clinically active TB than PPD, Hsp60, or ESAT-6 and

could distinguish TB patients from M. bovis BCG-vaccinated

controls as well [Khan et al., 2008]. The IgG response to recombinant

PPE57/Rv3425 was nearly equal to the well-known antigen CFP-10

and higher than ESAT-6 [Zhang et al., 2007]. Antibodies to the C

terminal of PPE55/Rv3347c can be detected during almost all

infection stages, such as the retrospective sera obtained months
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prior to manifestation of clinical TB from HIV(þ) TB(þ) individuals,

subclinical TB in HIV-infected humans but absent in the sera of

positive healthy controls [Singh et al., 2005]. In addition, PPE44/

Rv2770c-specific immune responses are detected in mice acutely,

chronically, and latently infected with M. tuberculosis as well.

Together, these may suggest that some PPE proteins such as PPE57/

Rv3425, PPE55/Rv3347c, PPE17/Rv1168c, and PPE44/Rv2770c

may be the potential biomarkers to detect latent, incipient and

subclinical tuberculosis [Romano et al., 2008]. A more rational

combination of these potential biomarkers for tuberculosis

serodiagnosis might be more sensitive, specific, and reliable. A

multicenter evaluation of these combinations are needed to valid the

huge potential.

POTENTIAL SUBUNIT VACCINE COMPONENTS

PPE proteins might be ideal vaccine candidates, several PPEs have

been assessed for possible inclusion in new vaccines [Bertholet et al.,

2008; Romano et al., 2008; Wang et al., 2009]. Some PPE proteins

have demonstrated great promise as vaccine components including

adjuvants (PPE42/Rv2608 and PPE44/Rv2770c) and T-cell antigen

(PPE57/Rv3425 and PPE68 /Rv3873). PPE42 (Rv2608) was shown to

confer partial protection in mice when formulated with the TLR-9

agonist CpG [Bertholet et al., 2008]. The fusion protein ID83 (a

mixture of Rv1813, Rv3620, and PPE42/Rv2608) elicits protective

immunity in mice [Bertholet et al., 2008], with efficacy varies with

adjuvants and route of immunization [Baldwin et al., 2009].

Recombinant PPE44 (Rv2770c) protein formulated in adjuvant

generated strong cellular and humoral immune responses compa-

rable to BCG [Romano et al., 2008], indicating that PPE44/Rv2770c

of M. tuberculosis is a protective antigen that might be included in

novel subunit TB vaccines [Cuccu et al., 2011]. PPE68/Rv3873, like

ESAT-6 and CFP10, is also a potent T-cell antigen recognized by

M. tuberculosis-infected individuals [Okkels et al., 2003]. Both

recombinant BCG co-expression PPE57/Rv3425 and Ag85B

(rBCG::Ag85B-Rv3425) elicit stronger IFN-g in antigen-stimulated

T cells and increased specific IgG titers in C57BL/6 mice [Wang et al.,

2009].

Development of effective TB control strategies remains one of the

most formidable challenges. PPE proteins play important role in the

host–pathogen interactions. More details on PPEs can better serve

future TB control measures development.
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